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Abstract: Generally the electric power system encompasses 
three parts: generation, transmission, and distribution that all 
require maintenance to improve reliability and energy 
efficiency of the power system. Most of generation maintenance 
scheduling (GMS) packages focus on preventive maintenance 
scheduling for generating units over one or two years to 
decrease the total operation costs while system energy 
requirements are provided. In advanced power systems, the 
inclusion of system such as fuel, crew, budget limitations, and 
demand for electricity have highly increased as well as 
expansions in the size of system. So they have led to higher 
number of generators and lower reserve margins, making the 
generator maintenance scheduling problem more complex. This 
paper proposes budget and a static security margin constrained 
model for preventive generation maintenance scheduling 
problem. In order to have a better optimized scheduling, a multi 
objective function (economic cost and reliability) is solved.  For 
more realistic study, a novel manpower constraint as well as 
relationship constraints for solving multi objective function is 
considered for the proposed maintenance scheduling problem. 
A test system including 21-genarators is employed for 
simulation and shows the accuracy of results. 
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1. Introduction 

    Scheduling of preventive maintenance for generators’ 

performance has been a debatable subject of study and 

analysis by many researchers. In the past, implicitly they 

recognized the importance of this topic in the sense that 

this was considered a complex problem, since the 

solution affected the daily unit commitment and the 

dispatch of the generation units. The problem had a 

variety of formulations and integrated a number of 

variables and constraints, reflecting different levels of 

refinements that were progressively introduced. 

Nevertheless, a number of features were common to all 

these formulations: one aimed at scheduling, the 

maintenance actions of a set of generators along a period 

of typically one or two years are discretized into weeks. It 

has to ensure that the expected demand is supplied, the 

maintenance period of each generator is continuous in 

time, the number of maintenance crews available for each 

generation technology is not exceeded, and at least one 

maintenance action is scheduled for each generator along 

the evaluation period. Typically this is corresponded to a 

combinatorial formulation of problem using binary 

variables having the value 1 if a particular generator is 

scheduled for maintenance in a particular week [1]. In 

modern power systems, the demand for electricity has 

greatly increased with related expansions in power 

system size, which has resulted in higher numbers of 

generators and lower reserve margins. The goal of GMS 

is to allocate a maintenance timetable for generators in 

order to maintain high reliability, reduce total operating 

costs, and extend generator’s life time, whilst still satisfy 

constraints on the individual generators and the power 

system. There are generally two categories of criteria for 

GMS problem; based on economic cost and reliability [2-

4]. The most common economic objective is to minimize 

the total operating cost, including the costs of energy 

production and maintenance [5-7]. The solution methods 

can fall into certain categories which are as follows: 

integer programming, decomposition methods [8], 

dynamic programming, simulated annealing method [9], 

probabilistic approach [10], and artificial intelligence 

method [11], [12]. 

    In this paper, it has tried to cover weakness of past 

GMS models and adding some features to make better 

GMS model. MGMS (modified GMS) model in this 

paper contains two objectives, increasing reliability and 

decreasing annual cost in a realistic condition. This goal 

is followed by adding some new constraints and 

considering multi objective function. Maintenance 

scheduling and OPF (to compute unit’s generation for 

fuel cost calculation) is solved by particle swarm 

optimization. OPF is solved by generic PSO and MGMS 

model is solved by discrete PSO. 

2. Problem Description and Solution Methodology 

Adding budget limitation and static security margin in 

annual reserve make maintenance schedule as a realistic 

programming and of course more complex. 

The multi objective function of the proposed model is 

considered in order to maximize reliability and minimize 

total maintenance and production costs over the 

operational planning period. a1 and a2 in equation (1) are 

defined over programming and changed in each PSO 

iteration. Equation (2) shows reliability objective 
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function. Power distribution among planning period is 

smoother; therefore, it leads to more reliable situation and 

lower value of reliability objective function.affiliation(s) 

should be centered, with the first character in every word 

in capital letters. 

In this equation, x_(i,t) is discrete variable that shows 

ith generator in tth period which is either on maintenance 

or not. Equation (3) corresponds to a mixed- discrete and 

continuous programming problem since x_(i,t)  & y_(i,t) 

are binary variables and g_(i,t) is continuous. The first 

term of the objective function is maintenance cost of 

generators and the second is startup and energy 

production cost. Both objective functions are 

minimization functions. Therefore, multi objective 

function converts to the single objective function by 

equation (1) that should be minimized. 

 

2.1 Multi-Objective Function and Related 

Constraints 

 

Min { F = a1f1 + a2f2 }                                     (1)                                                 
     
    Reliability objective function 

 

f1 = ∑ (∑ gi,t
c −∑ ∑ xi,kgi,t

c
k∈Si,ti∈It

I
i=1 − Dt)

2
T
t=1         (2)   

                     

    Economic cost objective function 

 

f2 = ∑ ∑ ctxi,t
T
t=1

I
i=1 +∑ ∑ (fiyi,t + kigi,t)

T
t=1

I
i=1    (3)    

             

    Constraints in this problem categorize into 3 parts; 

maintenance constraints, system constraints, budget limitation 

and relationship constraints. This category of constraints shows 

that variables in preventive generator maintenance scheduling 

are not independent and multi objective function in this problem 

is nonlinear. Production and maintenance could not be 

simultaneous. 
xi,tgi,t = 0      ,       for all i & t                                         (4)                                      

 

    The unit will be exploited after completely started up. 

 

yi,tgi,t = 0      ,       for all i & t                                              (5) 

 

xi,t + yi,t =

{
1, Gen. is on maintenance or starting

0,                          o. w.                                       
for all i&t  (6) 

      

    To specify maintenance window, (7) or (8) can be 

used. 

 

 {
∑ xi,t = 1                             for all i = 1,2, … , It∈Ti

∑ xi,t = Ni                             for all i = 1,2, … , I
T
t=1

      (7) 

 

 

 

{
 

 ∑ xi,txi,t+1…xi,t+Ni−1 = 1, for  all i = 1,2,… , I
T−Ni+1

t=1

∑ xi,t = Ni                                   ,          for all i = 1,2,… , I
T

t=1

 

                                                                                      (8) 

    For reducing maintenance periods and cost, available 

crews can be rise αt
1 percent of total available crews in tth 

period. 

 

 ∑ ∑ xi,kMi,kk∈Si,ti∈It < (1 + αt
1)At,      for all t =

1,2, … , T.                                                                    (9) 

 

    Each generator can start after maintenance only once 

over planning periods. 

 

∑ yi,t = 1  ,            for all i = 1,2, … , IT
t=1                   (10)  

 

    Meet demand with enough reliability is the main 

purpose in any power plants [13-27]. 

 

 ∑ gi,t = Dt                        for all t = 1,2, … , T,I
i=1          (11)           

 

    To maintain the stability of power plant and grid, there 

must be enough reserve at all planning periods. 

 

 ∑ gi,t
c

 
= (Dt + Rt)            for all t = 1,2, … , T,I

i=1       (12) 

 

    Equation (10) considers reliability of programming. 

For having flatter distribution of reserve during planning 

period, we could consider αt
2 percent of demand in each 

period as an obligatory demand. This trick helps 

distributing reserve more smoothly and increasing 

security and stability margin through the planning period. 

 

 ∑ gi,t
c − ∑ ∑ xi,kgi,t

c
k∈Si,ti∈It

I
i=1 ≥ (1 +

αt
2)Dt,     for all t = 1,2, … , T                            (13)  

 

    To compute fuel cost for active generators in economic 

cost objective function, power generation for each unit at 

all periods should be considered. 

 

gi
min(1 − xi,t) ≤ gi,t ≤ gi

max(1 − xi,t)          for all i & t.   
                                                                                   (14) 

    For specific power plants like nuclear or high capacity 

ones, ramp rate limitation of units should be considered 

for having exact and realistic programming. 

 

LRi ≤ gi,t+1 − gi,t ≤ URi     ,              for all i & t                    
                                                                                  (15) 

     Undoubtedly, finding budget for implementing 

generator maintenance and supply power feed is the most 



 

 

  

 

 

 

 

challenging issue in the planning of power plants both 

public and private. Unfortunately, this problem is not 

considered in proposed system maintenance planning. 

Generator maintenance scheduling should be based on 

provided cost in given periods. GMS problem in this 

paper is solved according to N budget period. 

 
Jn ≤ Cn

cost           ,    for n = 1,… , N                              (16) 
 

3. Solution Method 

    Figure 1 shows some possible methods to solve GMS 

problem. In this paper main problem is solved by DPSO 

and optimum power flow to compute fuel cost is solved 

by generic PSO. PSO particles could be discretized to 

multiple methods. Since being binary variables in GMS 

problem taking the bracket of the numbers between 0 and 

2 or rounding numbers between 0 and 1 is proposed. 

 

 
Fig. 1. Solution Methodologies 

 

    Because of discrete nature of GMS problem, any 

variation in particles may cause totality particle variation 

and worse particle production. Decreasing randomly 

variations can eliminate random functions in order to 

compute new velocity vector of particles. These 

variations are presented in (17). New position of particles 

and weight of old velocity for computing new velocity 

are considered in (18) and (19).  

 

Vi
k+1 = round(wVi

k + c1(Pi,best
k − xi

k) + c2(Pg
k − xi

k))      

                                                                                      (17) 

 

xi
k+1 = xi

k + Vi
k+1                                                        (18) 

 

w = wmax − k(wmax − wmin)/kmax                          (19) 

  

Where 

 

Vi
k                  current velocity. 

xi
k                   current position of particle i at iteration k. 

W                   inertia weight factor. 

K                    number of iterations. 

c1 & c2           acceleration constants. 

 

 TABLE I: Data of the Considered System 

Units Capacit

y/gi
max(

MW) 

gi
min 

(M

W) 

Allowed 

period 

Outage 

(weeks) 

Crews 

needed 

in each 

week 

1 555 462 1-26 7 10+10+

5+5+ 

5+5+3 

 2 180 150 1-26 2 15+15 

3 180 150 1-26 1 20 

4 640 533 1-26 3 15+15+15 

5 640 533 1-26 3 15+15+15 

6 276 230 1-26 10 3+2+2+2

+2+2+2+

2+2+3 

7 140 117 1-26 4 10+10+5

+5 

8 90 75 1-26 1 20 

9 76 63 1-26 2 15+15 

10 94 78 1-26 4 10+10+10
+10 

11 39 32 1-26 2 15+15 

12 188 152 1-26 2 15+15 

13 52 43 27-52 3 10+10+10 

14 555 462 27-52 5 10+10+10
+5+5 

15 640 533 27-52 5 10+10+10

+10+10 

16 555 462 27-52 6 10+10+10

+5+5+5 

17 76 63 27-52 3 10+15+15 

18 58 48 27-52 1 20 

19 48 40 27-52 2 15+15 

20 137 114 27-52 4 10+10+10

+10 

21 469 392 27-52 4 10+10+10

+10 

Total 5688 4732    



 

 

  

 

 

 

 

 

4.      Case Study 

 

    This paper considers a test problem of scheduling the 

maintenance of 21 generating units over a planning 

period of 52 weeks. This test problem is loosely derived 

from the example presented in [16] with some 

simplifications and additional constraints, and has been 

previously studied in [18], [19]. Table 1 gives the 

capacities, power generation limitations, allowed periods 

and duration of maintenance and the manpower required 

for each unit. Power system peak load is 4739MW, and 

there are 20 technical staffs available for maintenance 

work in each week. The problem involves the reliability 

criterion of minimizing the sum of squares of the reserves 

in each weekly time period and minimizing total cost of 

planning periods. Each unit must be maintained (without 

interruption) for a given duration within an allowed 

period. The allowed period for each generator is the result 

of a technical assessment and the experience of the 

maintenance personnel, which ensures adequate 

maintenance frequency. Due to its complexity, the exact 

optimum solution for this problem is unknown. Fuel cost 

of generators is calculated by equation (20). Coefficient 

168 is the conversion cost of each hour to week.  

 
kigi,t = 168(aigi,t

2 + bigi,t + ci)                                  (20) 
 

    Since reliability and economic cost objective functions 

are minimization problem, maintenance outages for 

generating units are scheduled to minimize the multi 

objective function (1) As it is mentioned, coefficients in 

multi objective function are determined in each iteration, 

and may be different for each swarm. 

Ctis assumed 2.5 million dollars. If there is any generator 

maintenance at period t or another one, this coefficient is 

zero.  

    It is planned to three set of constraints: 

 

Case1: {

6.5% 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛
20 𝑐𝑟𝑒𝑤𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
4 𝑏𝑢𝑑𝑔𝑒𝑡 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

 

 

Case2: {

1% 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛
20 𝑐𝑟𝑒𝑤𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
4 𝑏𝑢𝑑𝑔𝑒𝑡 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

 

 

Case3: {

𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛
30 𝑐𝑟𝑒𝑤𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑏𝑢𝑑𝑔𝑒𝑡 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛
 

 

 

𝑐𝑡 in MGMS model is considered 2.5 million in the 

weeks that are any maintenance regardless of the number 

of generators are held. 

Case3 gives from [15]. 

Demand is considered 4739 MW at all periods. 

 

TABLE II: Final Maintenance Schedule for Case 1 

 
 

   Tables II, III and IV show maintenance scheduling 

according to Case 1, 2 and 3 respectively. Additional cost 

for increasing crew is considered 3 percent of total cost of 

maintenance in Case1 and Case2. 

 

TABLE III: Final Maintenance Schedule for Case 2 

 
TABLE IV: Final Maintenance Schedule for Case 3 

 



 

 

  

 

 

 

 

TABLE V: Cost of Objective Function 

 Multi 

objective 

function 

Reliability 

objective 

function (SSR) 

Economic cost 

objective 

function($) 

Case1 0.4899 14635000 1055400000 

Case2 0.4891 16033000 1026600000 

Case3 0.5094 18112009 1017200000 

 

   Because of lower limitations in Case3, maintenance 

schedule is smoother in this case than the others. Table 5 

gives values of objective functions. SSR in Case1 is 

lower than the others, so reliability in this case is higher 

than other cases; however, economic cost is higher than 

Case2 and Case3. Therefore there is a compromise 

between reliability and economic costs, increasing 

reliability leads to increasing economic costs, and it is 

quite reasonable. Figure 2 compares available generation 

in Case1 and Case2. In Case1 available generation 

through the planning periods is more smoothly than 

Case2. Up and down horizontal lines in this Figure are 

total capacity and network demand, respectively. If 

available generation approaches to demand, security 

margin and reserve decrease, endangering stability. 

Adversely, if available generation approaches to capacity, 

reserve as well as security margin increases. 

Consequently, static stability is guaranteed. The main 

purpose in multi objective function is planning to 

increase reliability and security margin, and of course 

decreasing economic cost. Figure 3 shows employed 

maintenance staffs through the planning periods, that 

extra and total operators in Case1 are lower than other 

cases. Figures 4 and 5 compare these problems between 

Case1 and Case2. 

 

 
Fig. 2. Available Generation 

 

Fig. 3. Crew thorough the Planing Period 

 

 
Fig. 4. Available Generation 

 

 
Fig. 5. Crew thorough Planing Period 

 

5.     Conclusion 

    Preventive maintenance scheduling considering 

security margin in reserve constraint, leads to more 

smoothly distribution in available generation through the 

planning periods. More smoothly distributed generation 

contributes to increasing the number of weeks including 

any maintenance. This problem causes enhancement 

economic cost. So there is a compromise between 

reliability and economic cost through the planning 

periods. Better security margin and stability result in 

more economic condition of power plant. Adding 

constraints such as budget supplying limitation and 

security margin in reserve through the planning period 

improve GMS model and make it more realistic. 

 

6.    Nomenclature 

F Multi objective function for GMS problem. 

a1 & a2 Weight of reliability and economic cost 

objective functions in multi objective function. 

f1 & f2 respectively, reliability and economic cost 

objective functions. 

t              Index of time periods, t = 1,2, … , T. 

T            total number of planned horizons. 

𝑖             Index of the number of generators, i = 1,2, … , I. 

I              total number of generators. 

gi,t
c           Generating capacity of each generator (MW). 

gi,t     Variable of GMS problem that is generation of 

generator i at time t. 
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It         The set of indices of generators in maintenance 

in time t. 

K      Index of start periods of maintenance for each 

generator, k = 1,… , S.  

Si,t          Set of start time periods k such that if the 

maintenance of unit i starts at period k that unit 

will be in maintenance at period t, Si,t =

{k ∈ Ti: t − Ni + 1 ≤ k ≤ t}. 

Ti            Set of periods when maintenance of generator i 

may starts, Ti = {t ∈ T: ei ≤ t ≤ li − Ni + 1}. 

ei            Earliest period for generator i to start 

maintenance. 

li             Latest period for generator i to start 

maintenance. 

Ni           Duration of maintenance of generatori. 

xi,k Variable of GMS problem, if generator i at time 

k is on maintenance xi,k = 1, else 0. 

Dt demand per time. 

Rt reserve of plant at time t. 

ct    Maintenance cost coefficient that if exist any 

generators in maintenance at time t, ct is a fixed 

cost else is zero. 

fi        Starting cost coefficient that if generator i 

restarted at any periods fi is a fixed cost else is 

zero. 

ki        Fuel cost coefficient. 

yi,t      Variable of GMS problem, if generator i at 

period t is restarted yi,t is 1 else is 0. 

Mi,k      Number of crew that are needed for maintenance 

of generator i at periodk. 

At available crews at time t. 

αt
1 percentage of total crews that can be added to 

minimizing cost of power plant. 

αt
2 percentage of demand that presents security 

margin in reserve. 

LRi maximum down ramp rate per time period for 

each generator. 

URi maximum up ramp rate per time period for each 

generator. 

Jn total cost of power plant in n th budget period.   

n index of the number of budget period. 

Cn
cost available budget in n’th budget period. 
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